### **CETIFICATION**

SDG No:

MC45503

Laboratory:

Accutest, Massachusetts

Site:

BMS, Building 5 Area, PR

Matrix:

Soil

Humacao, PR

**SUMMARY:** 

Two (2) soil samples and one (1) equipment blank (Table 1) were collected on the BMSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken April 22, 2016 and were analyzed in Accutest Laboratory of Marlborough, Massachusetts that reported the data under SDG No.: MC45503. Results were validated using the following quality control criteria of the methods employed (MADEP VPH and MAPED EPH, Massachusets Department of Environmental Protection, 2004) and the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

| SAMPLE ID | SAMPLE<br>DESCRIPTION | MATRIX               | ANALYSIS PERFORMED                            |
|-----------|-----------------------|----------------------|-----------------------------------------------|
| MC45503-1 | RA14 (17 - 18)        | Soil                 | Volatiles TPHC Ranges Extractable TPHC Ranges |
| MC45503-2 | S-40S(10.5 – 11.5)    | Soil                 | Volatiles TPHC Ranges Extractable TPHC Ranges |
| MC45503-3 | BPEB-6                | AQ – Equipment Blank | Volatiles TPHC Ranges                         |

Reviewer Name:

Rafael Infante

**Chemist License 1888** 

Signature:

Date:

May 16, 2016

# Report of Analysis

Page 1 of 1

Client Sample ID: RA17(17-18)

Lab Sample ID:

MC45503-1

Matrix:

SO - Soil

Method:

MADEP VPH REV 1:1

DF

1

Date Received: 04/23/16

Date Sampled: 04/22/16

Percent Solids: 72.3

Project:

BMSMC, Building 5 Area, Puerto Rico

Analyzed

04/26/16

Prep Date

n/a

Prep Batch n/a

**Analytical Batch GAB5155** 

Run #1 Run #2

Initial Weight

AB93863.D

File ID

13.6 g

Final Volume

16.0 ml

Methanol Aliquot

100 ul

Ву

DF

Run #1 Run #2

# Volatile TPHC Ranges

| CAS No. | Compound                                                                                                                           | Result                     | RL                                        | MDL                                  | Units                                     | Q |
|---------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------|---|
|         | C5- C8 Aliphatics (Unadj.)<br>C9- C12 Aliphatics (Unadj.)<br>C9- C10 Aromatics (Unadj.)<br>C5- C8 Aliphatics<br>C9- C12 Aliphatics | ND<br>ND<br>ND<br>ND<br>ND | 10000<br>10000<br>10000<br>10000<br>10000 | 5000<br>5000<br>5000<br>5000<br>5000 | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg |   |
| CAS No. | Surrogate Recoveries                                                                                                               | Run#1                      | Run# 2                                    | Limi                                 | its                                       |   |
|         | 2,3,4-Trifluorotoluene<br>2,3,4-Trifluorotoluene                                                                                   | 73%<br>77%                 |                                           | 70-1<br>70-1                         |                                           |   |



ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



# Report of Analysis

Page 1 of 1

Client Sample ID: RA17(17-18)

Lab Sample ID:

MC45503-1

Matrix: Method: SO - Soil

MADEP EPH REV 1:1 SW846 3546

Date Sampled: 04/22/16

Date Received: 04/23/16

Percent Solids: 72.3

Project:

BMSMC, Building 5 Area, Puerto Rico

Run #1

File ID DE14042.D DF 1

Analyzed By 05/09/16 TA Prep Date 04/28/16

Prep Batch OP47259

**Analytical Batch GDE787** 

Run #2

Initial Weight

11.2 g

Final Volume 2.0 ml

Run #1 Run #2

# Extractable TPHC Ranges

| CAS No.                         | Compound                                                                                   | Result               | RL                               | MDL                            | Units                            | Q |
|---------------------------------|--------------------------------------------------------------------------------------------|----------------------|----------------------------------|--------------------------------|----------------------------------|---|
|                                 | C11-C22 Aromatics (Unadj.)<br>C9-C18 Aliphatics<br>C19-C36 Aliphatics<br>C11-C22 Aromatics | ND<br>ND<br>ND<br>ND | 25000<br>12000<br>12000<br>25000 | 20000<br>9900<br>9900<br>20000 | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg |   |
| CAS No.                         | Surrogate Recoveries                                                                       | Run#1                | Run# 2                           | Lim                            | its                              |   |
| 84-15-1<br>321-60-8<br>580-13-2 | o-Terphenyl<br>2-Fluorobiphenyl<br>2-Bromonaphthalene                                      | 84%<br>86%<br>88%    |                                  | 40-1                           | 40%<br>40%<br>40%                |   |
| 3386-33-2                       | 1-Chlorooctadecane                                                                         | 59%                  |                                  | 40-1                           | 40%                              |   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



# Report of Analysis

Page 1 of 1

Client Sample ID: S-40S(10.5-11.5)

Lab Sample ID:

MC45503-2

Matrix: Method: SO - Soil

MADEP VPH REV 1-1

Date Sampled: Date Received:

04/22/16 04/23/16

Percent Solids: 76.5

Project:

BMSMC, Building 5 Area, Puerto Rico

**Analytical Batch** 

Run #1

File ID AB93864.D DF 1

Analyzed By 04/26/16

Prep Date n/a

Prep Batch n/a

GAB5155

Run #2

Initial Weight 15.8g

Final Volume 16.0 ml

Methanol Aliquot

DF

100 ul

Run #1 Run #2

# Volatile TPHC Ranges

| CAS No. | Compound                    | Result | RL     | MDL  | Units | Q |
|---------|-----------------------------|--------|--------|------|-------|---|
|         |                             |        |        |      |       |   |
|         | C5- C8 Aliphatics (Unadj.)  | ND     | 8200   | 4100 | ug/kg |   |
|         | C9- C12 Aliphatics (Unadj.) | ND     | 8200   | 4100 | ug/kg |   |
|         | C9- C10 Aromatics (Unadj.)  | ND     | 8200   | 4100 | ug/kg |   |
|         | C5- C8 Aliphatics           | ND     | 8200   | 4100 | ug/kg |   |
|         | C9- C12 Aliphatics          | ND     | 8200   | 4100 | ug/kg |   |
| CAS No. | Surrogate Recoveries        | Run# 1 | Run# 2 | Limi | its   |   |
|         | 2,3,4-Trifluorotoluene      | 85%    |        | 70-1 | 30%   |   |
|         | 2,3,4-Trifluorotoluene      | 90%    |        | 70-1 | 30%   |   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

# Report of Analysis

Page 1 of 1

Client Sample ID: S-40S(10.5-11.5)

MC45503-2

Lab Sample ID: Matrix:

SO - Soil

Date Sampled: 04/22/16 Date Received: 04/23/16

Method:

MADEP EPH REV 1:1 SW846 3546

Percent Solids: 76.5

Project:

BMSMC, Building 5 Area, Puerto Rico

Analyzed

05/04/16

Run #1

File ID DF DE14018.D 1

By TA

Prep Batch Prep Date 04/28/16 OP47259

Analytical Batch **GDE784** 

Run #2

Initial Weight Final Volume

Run #1

2.0 ml

Run #2

Extractable TPHC Ranges

11.7 g

| CAS No.                                      | Compound                                                                                   | Result                   | RL                               | MDL                            | Units                            | Q |
|----------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------|----------------------------------|--------------------------------|----------------------------------|---|
|                                              | C11-C22 Aromatics (Unadj.)<br>C9-C18 Aliphatics<br>C19-C36 Aliphatics<br>C11-C22 Aromatics | ND<br>ND<br>ND<br>ND     | 22000<br>11000<br>11000<br>22000 | 18000<br>9000<br>9000<br>18000 | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg |   |
| CAS No.                                      | Surrogate Recoveries                                                                       | Run#1                    | Run# 2                           | Limi                           | its                              |   |
| 84-15-1<br>321-60-8<br>580-13-2<br>3386-33-2 | o-Terphenyl 2-Fluorobiphenyl 2-Bromonaphthalene 1-Chlorooctadecane                         | 97%<br>94%<br>97%<br>82% |                                  | 40-1<br>40-1<br>40-1<br>40-1   | 40%<br>40%                       |   |



ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E - Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

# Report of Analysis

n/a

Page 1 of 1

Client Sample ID: BPEB-6

Lab Sample ID:

MC45503-3

Matrix: Method:

Project:

AQ - Equipment Blank

MADEP VPH REV 1:1

1

BMSMC, Building 5 Area, Puerto Rico

Date Sampled: 04/22/16

n/a

Date Received: 04/23/16

Percent Solids: n/a

File ID DF Analyzed Prep Date Prep Batch **Analytical Batch** By BD73422.D 04/25/16 AF GBD3622

Run #1 Run #2

Purge Volume

5.0 ml Run #1

Run #2

# Volatile TPHC Ranges

| CAS No. | Compound                                                                                                                           | Result                     | RL                         | MDL                        | Units                                | Q |
|---------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|--------------------------------------|---|
|         | C5- C8 Aliphatics (Unadj.)<br>C9- C12 Aliphatics (Unadj.)<br>C9- C10 Aromatics (Unadj.)<br>C5- C8 Aliphatics<br>C9- C12 Aliphatics | ND<br>ND<br>ND<br>ND<br>ND | 50<br>50<br>50<br>50<br>50 | 40<br>40<br>40<br>40<br>40 | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l |   |
| CAS No. | Surrogate Recoveries                                                                                                               | Run# 1                     | Run# 2                     | Lim                        | its                                  |   |
|         | 2,3,4-Trifluorotoluene<br>2,3,4-Trifluorotoluene                                                                                   | 86%<br>105%                |                            |                            | 30%<br>30%                           |   |



ND = Not detected

MDL = Method Detection Limit

RL - Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank



| SGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ACCUTEST       | SA O'August                     |                                                  | USTODY<br>y England<br>kerbarnegh, NA 81752<br>508-461-7753<br>com | 802591276687                    | PAGE OF DOTALL OF SOR                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------|--------------------------------------------------|--------------------------------------------------------------------|---------------------------------|-------------------------------------------------------|
| Calcul Reporting bifurenation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Project Name   | MC A                            | ect leformation                                  | accord.                                                            | Registed Ambrila (a             |                                                       |
| Anderson Mulholland F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S.IAC ST       | VIS Kolcas                      | פל וק שפ                                         | CSS Meril                                                          |                                 | DW - Drinking Wali<br>GW - Ground Wali<br>WW - Walier |
| 2700 Westch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ध्रांट (का     |                                 | Billing Inform                                   | nation ( if different from Report to)                              | 4     1   1                     | SW - Surface Water<br>SO - Sarl                       |
| Durchase NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Proecid        |                                 | Sheet Address                                    |                                                                    | 1 00 1 1                        | SED-Sections OI - OI                                  |
| Terry Taylor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                                 |                                                  |                                                                    | [뒤걸                             | LIQ - Other Leguid<br>AR - Arr                        |
| 914 - 251-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | OO Chart POW   |                                 | Cay                                              | Store Zer                                                          |                                 | SOL - Other Sold<br>WP - Wigo<br>FB-Fold Mont         |
| Satyles(s) Natio(s) Provided Add All (A) (company)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Popel Hange    | -                               | Atlantion.                                       | FOR                                                                |                                 | EB- Equipment Blan<br>RB- Rose Blank                  |
| N. Rivera, Totastor, D. Wine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 211-45         | Collection                      |                                                  | Number of presented Builties                                       | 1 8 2                           | TB-Tru Store.                                         |
| 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                                 |                                                  |                                                                    | 1 2 K                           |                                                       |
| -/ RA 7 (17-18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DON MAKOMBINMA | 1/22/16 1200                    | TT SO                                            |                                                                    | ZZ                              | LAB USE ONLY                                          |
| 2 5-405 (10.5-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5            | 4/22/16 1231                    | NR SO Z                                          | 2 2 2                                                              | 22                              |                                                       |
| 3 BPEB-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 4/22/16 1100                    |                                                  | 3 3                                                                | X                               |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                 | 1 1 1                                            |                                                                    |                                 |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                 | <del>                                     </del> |                                                                    |                                 | 111111111111111111111111111111111111111               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 1                               | <del>                                     </del> | <del>-                                      </del>                 |                                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                 |                                                  | <del></del>                                                        |                                 |                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                 |                                                  |                                                                    |                                 | 264                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                 |                                                  |                                                                    |                                 | 2-1                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                 | <del>                                     </del> |                                                                    |                                 | <del></del>                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | and the second second           |                                                  | Date Daive via Information                                         |                                 | retreate / Spacial Imply acquire                      |
| Turnerwood Three ( Business days Std. 19 Goodness Chapt Std. 5 Goo |                | E Associant Phily I Date:       | Commercial */                                    | T ( Level 2) YASP Cases                                            | · ·                             |                                                       |
| \$1d. 5 Bus Hose Days (By Contract or<br>\$ Day RUSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | wi"            |                                 | FIELTI (Lon                                      | #3+4) Stone Forms                                                  | INITIAL ASE                     | SOMENT_1                                              |
| 1 Day EMERGENCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -121           |                                 | - mmc                                            | Commercial "A" • Results Only                                      | _                               |                                                       |
| 1 Day EMERGENCY FO AQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ICNS           | 9                               | Car                                              | TRANSMITTER TO PROBLEM + CIC Suntening                             | LABEL VER                       | FICATION P                                            |
| Emergency & Room 17A, data breaking VA-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.             | marks Countries must be distant | vented below each list                           | ne sumples change possession, incl                                 | uding course delivery.          | J. J.                                                 |
| · Alarasata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4/22/14/500    | FedEX                           |                                                  | 2 Fayer                                                            | 1/23/16                         | 2 North                                               |
| Subsequented by Suspiter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | State Virus:   | Recover By:                     |                                                  | Returnated by:                                                     | 7                               | Asserted By                                           |
| Authoritative by .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date Time:     | Received By.                    |                                                  | 616                                                                | O text Proposed when applicable | 2.5 C                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 14.                             |                                                  | 10/10                                                              | U management U                  | /                                                     |

MC45503: Chain of Custody Page 1 of 2

#### **EXECUTIVE NARRATIVE**

SDG No:

MC45503

Laboratory:

**Accutest, Massachusetts** 

Analysis:

MADEP VPH

**Number of Samples:** 

3

Location:

BMSMC, Building 5 Area

Humacao, PR

**SUMMARY:** 

Three (3) samples were analyzed for Volatiles TPHC Ranges by method MADEP VPH. Samples were validated following the METHOD FOR THE DETERMINATION OF VOLATILE PETROLEUM HYDROCARBONS (VPH) quality control criteria, Massachusetts Department of Environmental Protection, Revision 1.1 (2004). Also the general validation guidelines promulgated by the USEPA Hazardous Wastes Support Section. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

**Critical issues:** 

None

Major:

None

Minor:

None

**Critical findings:** 

None

Major findings:

None

**Minor findings:** 

 Continuing and final calibration verification % difference for the rt5.5-7 range outside method performance criteria. No action taken, volatile petroleum hydrocarbons in this range were not detected in the affected

sample.

**COMMENTS:** 

Results are valid and can be used for decision making purposes.

**Reviewers Name:** 

Rafael Infante

Chemist License 1888

Signature:

May 16, 2016

Date:

# SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: MC45503-1

Sample location: BMSMC Building 5 Area Sampling date: 4/22/2016

Matrix: Soil

# METHOD: MADEP VPH

| Ç9 - C12 Aliphatics | Ç5 - C8 Aliphatics | Ç9 - C10 Aromatics (Unadj.) | Ç9 - C12 Aliphatics (Unadj.) | Ç5 - C8 Aliphatics (Unadj.) | Analyte Name                   |
|---------------------|--------------------|-----------------------------|------------------------------|-----------------------------|--------------------------------|
| 10000               | 10000              | 10000                       | 10000                        | 10000                       | Result                         |
| ug/Kg 1             | ug/Kg 1            | ug/Kg 1                     | ug/Kg 1                      | ug/Kg 1                     | Units Dilution Factor Lab Flag |
| ,                   | •                  | ı                           | •                            |                             | Lab Flag                       |
| _                   | _                  | C                           | <b>–</b>                     | _                           | Validation                     |
| Yes                 | Yes                | Yes                         | Yes                          | Yes                         | Validation Reportable          |

Sample ID: MC45503-2

Sample location: BMSMC Building 5 Area

Sampling date: 4/22/2016

Matrix: Soil

# METHOD: MADEP VPH

| Ç9 - C12 Aliphatics | Ç5 - C8 Aliphatics | Ç9 - C10 Aromatics (Unadj.) | Ç9 - C12 Aliphatics (Unadj.) | Ç5 - C8 Aliphatics (Unadj.) | Analyte Name            |
|---------------------|--------------------|-----------------------------|------------------------------|-----------------------------|-------------------------|
| 8200                | 8200               | 8200                        | 8200                         | 8200                        | Result                  |
| ug/Kg 1             | ug/Kg 1            | ug/Kg 1                     | ug/Kg 1                      | ug/Kg 1                     | Units Dilution Factor 1 |
| •                   | •                  | ı                           |                              | •                           | ab Flag                 |
| <b>C</b>            | <b>C</b>           | <b>C</b>                    | <b>C</b>                     | <b>C</b>                    | <b>Validation</b>       |
| Yes                 | Yes                | Yes                         | Yes                          | Yes                         | Reportable              |

Sample ID: MC45503-3

Sample location: BMSMC Building 5 Area Sampling date: 4/22/2016
Matrix: AQ - Equipment Blank

# METHOD: MADEP VPH

| Ç9 - C12 Aliphatics | Ç5 - C8 Aliphatics | Ç9 - C10 Aromatics (Unadj.) | Ç9 - C12 Aliphatics (Unadj.) | Ç5 - C8 Aliphatics (Unadj.) | Analyte Name R        |
|---------------------|--------------------|-----------------------------|------------------------------|-----------------------------|-----------------------|
| 50                  | 50                 | 50                          | 50                           | 50                          | Result                |
| ug/L 1              | ug/L 1             | ug/L 1                      | ug/L 1                       | ug/L 1                      | Units Dilution Factor |
| ı                   | •                  | •                           | •                            | •                           | Lab Flag              |
| <b>C</b>            | C                  | C                           | <b>C</b>                     | C                           | Validation            |
| Yes                 | Yes                | Yes                         | Yes                          | Yes                         | Reportable            |

# DATA REVIEW WORKSHEETS

|                                                                                                                                               | 12                                                                                                                                                   |                                                                                                                                                                                                                                                   |                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Type of validation                                                                                                                            | Full:X<br>Limited:                                                                                                                                   | Project Number:_MC458 Date:04/22/2016_ Shipping date:04/ EPA Region:2_                                                                                                                                                                            | 22/2016                                                                                                                         |
| REVIEW OF \                                                                                                                                   | VOLATILE PETROLE                                                                                                                                     | UM HYDROCARBON (VPI                                                                                                                                                                                                                               | ds) PACKAGE                                                                                                                     |
| validation actions. Thi more informed decision were assessed accomprecedence METHORYDROCARBONS (V. (2004). Also the gent Support Section. The | is document will assist the containing and in better serving ding to the data validation FOR THE DET/PH), Massachusetts Deteral validation guideline | atile organics were created ne reviewer in using profession the needs of the data user tion guidance documents in TERMINATION OF VOLAR partment of Environmental Plus promulgated by the USEF idation actions listed on the dess otherwise noted. | onal judgment to make is. The sample results the following order of ATILE PETROLEUM rotection, Revision 1.1 PA Hazardous Wastes |
| The hardcopied (lab<br>received has been rev<br>review for SVOCs incl                                                                         | viewed and the quality c                                                                                                                             | est_Laboratories_<br>ontrol and performance data                                                                                                                                                                                                  | data package<br>summarized. The data                                                                                            |
| No. of Samples:<br>Field blank No.:<br>Equipment blank No.:                                                                                   | :MC45503<br>_3<br>MC45503-3                                                                                                                          | Sample matrix:                                                                                                                                                                                                                                    |                                                                                                                                 |
| X Data ComplX Holding TimN/A GC/MS TuniN/A Internal StarX BlanksX Surrogate RX Matrix Spike                                                   | es<br>ing<br>ndard Performance                                                                                                                       | X Laboratory Control X Field Duplicates X Calibrations X Compound Identif X Compound Quant X Quantitation Limit                                                                                                                                   | fications<br>itation                                                                                                            |
| Overall Com<br>(C5_to_C12_Aliphatic                                                                                                           | ments: _Volatilos;_C9_to_C10_Aromati                                                                                                                 | es_by_GC_by_Method_MAD                                                                                                                                                                                                                            | EP_VPH,_REV_1.1                                                                                                                 |
| Definition of Qualifiers                                                                                                                      | s:                                                                                                                                                   |                                                                                                                                                                                                                                                   |                                                                                                                                 |
| J- Estimated res U- Compound no R- Rejected data UJ- Estimated no Reviewer:                                                                   | ot detected                                                                                                                                          |                                                                                                                                                                                                                                                   |                                                                                                                                 |

|         |                                  | Criteria were not n | All criteria were metx<br>net and/or see below |
|---------|----------------------------------|---------------------|------------------------------------------------|
|         | DATA COMPLETNE<br>A. Data Packag |                     |                                                |
| MISSING | G INFORMATION                    | DATE LAB. CONTACTED | DATE RECEIVED                                  |
|         |                                  |                     |                                                |
|         |                                  |                     |                                                |
|         | Messact —                        |                     |                                                |
| B. C    | Other                            |                     | Discrepancies:                                 |
|         |                                  |                     |                                                |
|         |                                  |                     |                                                |
|         |                                  |                     |                                                |
|         |                                  |                     |                                                |
|         |                                  |                     |                                                |

| All criteria were met                  | X |
|----------------------------------------|---|
| Criteria were not met and/or see below |   |

# HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of extraction, and subsequently from the time of extraction to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

| SAMPLE ID | DATE<br>SAMPLED  | DATE<br>EXTRACTED | DATE<br>ANALYZED | ACTION   |
|-----------|------------------|-------------------|------------------|----------|
|           |                  |                   |                  |          |
| S         | amples analyzed  | within method re  | commended hold   | ing time |
|           | anipios dilaiges |                   |                  |          |
|           |                  |                   |                  |          |

## Criteria

# Preservation:

Samples analyzed with ambient purge temperature: Samples must be acidified to a pH of 2.0 or less at the time of collection.

Samples analyzed with heated purge temperature: Samples must be treated to a pH of 11.0 or greater at the time of collection.

Methanol preservation of soil/sediment samples is mandatory. Methanol (purgeand-trap grade) must be added to the sample vial before or immediately after sample collection. In lieu of the in-field preservation of samples with methanol, soil samples may be obtained in specially-designed air tight sampling devices, provided that the samples are extruded and preserved in methanol within 48 hours of collection.

# Holding times:

Aqueous samples using ambient or heated purge - analyze within 14 days. Soil/sediment samples - analysis within 28 days.

| Cooler tem | perature ( | Criteria: 4 | 4 + 2 | °C): | 2.5° | С |  |
|------------|------------|-------------|-------|------|------|---|--|
|            |            |             |       |      |      |   |  |

Actions: Qualify positive results/nondetects as follows:

If holding times are exceeded, estimate positive results (J) and nondetects (UJ). If holding times are grossly exceeded, use professional judgment to qualify data. The data reviewer may choose to estimate positive results (J) and rejects nondetects (R). If samples were not at the proper temperature (> 10°C) or improperly preserved, use professional judgment to qualify the results.

|          |                     | Crite                    | All criteria<br>ria were not met and/o     | a were metX<br>or see below |
|----------|---------------------|--------------------------|--------------------------------------------|-----------------------------|
| CALIBRAT | IONS VERIFIC        | ATION                    |                                            |                             |
|          | at the instrum      |                          | nstrument calibration<br>producing and mai |                             |
| Date     | e of initial calib  | ration:01/12/16          |                                            | _02/19/16                   |
| Dat      | es of initial calil | pration verification:    | _01/12/16                                  | _02/19/16                   |
| inst     | rument ID num       | bers:GCAI                | BG                                         | CBD                         |
| Mat      | rix/Level:          | _ AQUEOUS/MEDIU          | M AQUE                                     | OUS/MEDIUM                  |
| DATE     | LAB FILE<br>ID#     | ANALYTE                  | CRITERIA OUT<br>RFs, %RSD, %D, r           |                             |
|          |                     |                          |                                            |                             |
| Initi    | al and initial ca   | libration verification i | meet method specific i                     | requirements                |

### Criteria- ICAL

- Five point calibration curve.
- The percent relative standard deviation (%RSD) of the calibration factor must be equal to or less than 25% over the working range for the analyte of interest.
   When this condition is met, linearity through the origin may be assumed, and the average calibration factor is used in lieu of a calibration curve.
- A collective calibration factor must also be established for each hydrocarbon range of interest. Calculate the collective CFs for C5-C8 Aliphatic Hydrocarbons and C9-C12 Aliphatic Hydrocarbons using the FID chromatogram. Calculate the collective CF for the C9-C10 Aromatic Hydrocarbons using the PID chromatogram. Tabulate the summation of the peak areas of all components in that fraction against the total concentration injected. The %RSD of the calibration factor must be equal to or less than 25% over the working range for the hydrocarbon range of interest.

# Criteria- CCAL

- At a minimum, the working calibration factor must be verified on each working day, after every 20 samples, and at the end of the analytical sequence by the injection of a mid-level continuing calibration standard to verify instrument performance and linearity.
- If the percent difference (%D) for any analyte varies from the predicted response by more than ±25%, a new five-point calibration must be performed for that analyte. Greater percent differences are permissible for n-nonane. If the %D for n-nonane is greater than 30, note the nonconformance in the case narrative. It

# **DATA REVIEW WORKSHEETS**

should be noted that the %Ds are calculated when CFs are used for the initial calibration and percent drifts are calculated when calibration curves using linear regression are used for the initial calibration.

### Actions:

If %RSD > 25% for target compounds or a correlation coefficient < 0.99, estimate positive results (J) and use professional judgment to qualify nondetects. If % D > 25% (> 30 for nonane), estimate positive results (J) and nondetects (UJ).

### CALIBRATIONS VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

| Date of initial calibration:01/12/16                   | 02/19/16 |
|--------------------------------------------------------|----------|
| Dates of continuing calibration verification:04/26/16_ | 04/25/16 |
| Dates of final calibration verification:04/27/16       | 04/25/16 |
| Instrument ID numbers:GCAB                             | GCBD     |
| Matrix/Level: AQUEOUS/MEDIUM                           |          |

| DATE                      | LAB FILE                                                                                   | ANALYTE | CRITERIA OUT             | SAMPLES          |     |  |
|---------------------------|--------------------------------------------------------------------------------------------|---------|--------------------------|------------------|-----|--|
|                           | ID#                                                                                        |         | RFs, %RSD, <u>%D</u> , r | , %D, r AFFECTED |     |  |
| Instrument                | GCAB                                                                                       |         |                          |                  |     |  |
| 04/26/16                  | cc5058-50                                                                                  | rt5.5-7 | 41.9 %                   | MC45503-1 a      | and |  |
| 04/27/16                  | cc5058-50                                                                                  | rt5.5-7 | 47.2 %                   | MC45503-2        |     |  |
| Continuing                | Continuing and final calibration verification meet method specific requirements except for |         |                          |                  |     |  |
| the case described above. |                                                                                            |         |                          |                  |     |  |
|                           |                                                                                            |         |                          |                  |     |  |

**Note:** No action taken, volatile petroleum hydrocarbons not detected in this range.

A separate worksheet should be filled for each initial curve

|                                                                                         |                                                                                          |                                                                                     |                                                                                                                           | All Citteria were met/                                                                                                                                                                   | <b>`</b>                                      |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
|                                                                                         |                                                                                          | (                                                                                   |                                                                                                                           | met and/or see below                                                                                                                                                                     |                                               |
| VA. BLANK                                                                               | ANALYSIS RE                                                                              | ESULTS (Sec                                                                         | ctions 1 & 2)                                                                                                             |                                                                                                                                                                                          |                                               |
| magnitude of c<br>blanks associa<br>problems with<br>evaluated to de<br>case, or if the | ontamination pated with the sate any blanks extermine whethe problem is an must be run a | problems. The amples, incluxist, all data ner or not the isolated occurater sample. | e criteria for eval<br>ding trip, equipm<br>associated with<br>ere is an inheren<br>urrence not affec<br>s suspected of l | letermine the existence duation of blanks apply or nent, and laboratory blants the case must be care t variability in the data footing other data. A Laborately being highly contaminate | nly to<br>ks. If<br>efully<br>or the<br>atory |
| List the contain separately.                                                            | nination in the                                                                          | blanks belov                                                                        | v. High and low                                                                                                           | levels blanks must be tre                                                                                                                                                                | ated                                          |
| Laboratory blar                                                                         | nks                                                                                      |                                                                                     |                                                                                                                           |                                                                                                                                                                                          |                                               |
| DATE<br>ANALYZED                                                                        | LAB ID                                                                                   | LEVEL/<br>MATRIX                                                                    | COMPOUND                                                                                                                  | CONCENTRATION UNITS                                                                                                                                                                      |                                               |
| METHOD BI                                                                               | ANKS MEET                                                                                | THE METHO                                                                           | D SPECIFIC CR                                                                                                             | RITERIA                                                                                                                                                                                  | _                                             |
|                                                                                         |                                                                                          |                                                                                     |                                                                                                                           |                                                                                                                                                                                          | _                                             |
|                                                                                         |                                                                                          |                                                                                     |                                                                                                                           |                                                                                                                                                                                          | _                                             |
| Field/Trip/Equip                                                                        | pment                                                                                    |                                                                                     | v.                                                                                                                        | 0                                                                                                                                                                                        |                                               |
|                                                                                         | ment sample                                                                              |                                                                                     |                                                                                                                           | should continually accomespectively, during same                                                                                                                                         |                                               |
| DATE<br>ANALYZED                                                                        | LAB ID                                                                                   | LEVEL/<br>MATRIX                                                                    | COMPOUND                                                                                                                  | CONCENTRATION UNITS                                                                                                                                                                      |                                               |
| _NO_TRIP/FIE<br>_NO_TARGET                                                              | ELD_BLANKS_<br>_ANALYTES_                                                                | ASSOCIATE<br>DETECTED                                                               | D_WITH_THIS_<br>_IN_THE_EQUIF                                                                                             | DATA_PACKAGE<br>PMENT_BLANK                                                                                                                                                              |                                               |
|                                                                                         |                                                                                          |                                                                                     |                                                                                                                           |                                                                                                                                                                                          |                                               |
|                                                                                         |                                                                                          |                                                                                     |                                                                                                                           |                                                                                                                                                                                          |                                               |

|                   | All criteria were met | X |
|-------------------|-----------------------|---|
| Criteria were not | met and/or see below  |   |

# V B. BLANK ANALYSIS RESULTS (Section 3)

# **Blank Actions**

The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. Peaks must not be detected above the Reporting Limit within the retention time window of any analyte of interest. The hydrocarbon ranges must not be detected at a concentration greater than 10% of the most stringent MCP cleanup standard. Specific actions area as follows:

If the concentration is < sample quantitation limit (SQL) and < AL, report the compound as not detected (U) at the SQL.

If the concentration is  $\geq$  SQL but < AL, report the compound as not detected (U) at the reported concentration.

If the concentration is > AL, report the concentration unqualified.

| All criteria were met                    | X |
|------------------------------------------|---|
| Criteria were not met and/or see below _ |   |

# SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

|                                | SURROGĂTE CO<br>2,3,4-Trifluorotolue |             |               | ACTION     |
|--------------------------------|--------------------------------------|-------------|---------------|------------|
| _SURROGATE_S<br>_LIMITS        | STANDARD_RECO                        | VERIES_WITH | IIN_LABORATOR | RY_CONTROL |
|                                |                                      |             | 38 3775       |            |
| QC Limits* (Aque               |                                      |             |               |            |
| LL_to_UL<br>QC Limits* (Solid) |                                      | to          | to            |            |
| LL_to_UL_                      | to                                   | to          | to            |            |

It is recommended that surrogate standard recoveries be monitored and documented on a continuing basis. At a minimum, when surrogate recovery from a sample, blank, or QC sample is less than 70% or more than 130%, check calculations to locate possible errors, check the fortifying standard solution for degradation, and check changes in instrument performance.

If the cause cannot be determined, reanalyze the sample unless one of the following exceptions applies:

- (1) Obvious interference is present on the chromatogram (e.g., unresolved complex mixture);
- (2) Percent moisture of associated soil/sediment sample is >25% and surrogate recovery is >10%; or
- (3) The surrogate exhibits high recovery and associated target analytes or hydrocarbon ranges are not detected in sample.

If a sample with a surrogate recovery outside of the acceptable range is not reanalyzed based on any of these aforementioned exceptions, this information must be noted on the data report form and discussed in the Executive Report. Analysis of the sample on dilution may diminish matrix-related surrogate recovery problems. This approach can be used as long as the reporting limits to evaluate applicable MCP standards can still be achieved with the dilution. If not, reanalysis without dilution must be performed.

| All criteria were metX                 |
|----------------------------------------|
| Criteria were not met and/or see below |

# VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples.

At the request of the data user, and in consideration of sample matrices and data quality objectives, matrix spikes and matrix duplicates may be analyzed with every batch of 20 samples or less per matrix.

- Matrix duplicate Matrix duplicates are prepared by analyzing one sample in duplicate. The purpose of the matrix duplicates is to determine the homogeneity of the sample matrix as well as analytical precision. The RPD of detected results in the matrix duplicate samples must not exceed 50 when the results are greater than 5x the reporting limit.
- The desired spiking level is 50% of the highest calibration standard. However, the total concentration in the MS (including the MS and native concentration in the unspiked sample) should not exceed 75% of the highest calibration standard in order for a proper evaluation to be performed. The purpose of the matrix spike is to determine whether the sample matrix contributes bias to the analytical results. The corrected concentrations of each analyte within the matrix spiking solution must be within 70 130% of the true value. Lower recoveries of nnonane are permissible (if included in the calibration of the C9-C12 aliphatic range), but must be noted in the narrative if <30%.</p>

# MS/MSD Recoveries and Precision Criteria

|                 | 45503-3_MS/MSD<br>45504-1_MS/MSD |             |          | :/Level:_Aqueou<br>:/Level:_Soil | ıs     |
|-----------------|----------------------------------|-------------|----------|----------------------------------|--------|
| List the %Rs, R | PD of the compounds w            | hich do not | t meet t | he QC criteria.                  |        |
| MS OR MSD       | COMPOUND                         | % R         | RPD      | QC LIMITS                        | ACTION |
|                 |                                  |             | CONTRACT | W 13                             |        |
|                 |                                  |             |          |                                  |        |
|                 |                                  | 191-11120   |          |                                  |        |
|                 |                                  |             |          |                                  |        |

**Note:** MS/MSD % recoveries and RPD within laboratory control limits. Aqueous MS/MSD sample is an Equipment Blank.

| All criteria were met                  | X |
|----------------------------------------|---|
| Criteria were not met and/or see below |   |

No action is taken on MS/MSD results alone to qualify the entire case. However, used informed professional judgment, the data reviewer may use the MS/MSD results in conjunction with other QC criteria and determine the need for some qualification of the data. In those instances where it can be determined that the results of the MS/MSD affect only the sample spiked, the qualification should be limited to this sample alone. However, it may be determined through the MS/MSD results that the laboratory is having a systematic problem in the analysis of one or more analytes, which affects the associated samples.

# 2. MS/MSD – Unspiked Compounds

List the concentrations of the unspiked compounds and determine the % RSDs of these compounds in the unspiked sample, matrix spike, and matrix spike duplicate.

| COMPOUND | CONCENTRA<br>SAMPLE | ATION<br>MS | MSD | %RPD | ACTION |
|----------|---------------------|-------------|-----|------|--------|
|          |                     |             |     |      |        |
|          |                     |             |     |      |        |
|          | 5000 2000           |             |     |      | -      |
|          |                     |             |     |      |        |
|          |                     |             |     |      |        |
|          |                     |             |     |      |        |

Criteria: None specified, use %RSD < 50 as professional judgment.

## Actions:

If the % RSD > 50, qualify the results in the spiked sample as estimate (J). If the % RSD is not calculable (NC) due to nondetect value in the sample, MS, and/or MSD, use professional judgment to qualify sample data.

A separate worksheet should be used for each MS/MSD pair.

| All criteria were metX                 |
|----------------------------------------|
| Criteria were not met and/or see below |

# VIII. LABORATORY CONTROL SAMPLE (LCS/LCSD) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

List the %R of compounds which do not meet the criteria

| LCS ID COMPOUND % R QC LIMIT ACTION          |  |  |  |  |  |  |  |  |
|----------------------------------------------|--|--|--|--|--|--|--|--|
| LCS_RECOVERY_WITHIN_LABORATORY_CONTROL_LIMTS |  |  |  |  |  |  |  |  |
|                                              |  |  |  |  |  |  |  |  |
|                                              |  |  |  |  |  |  |  |  |

## Criteria:

- \* Refer to QAPP for specific criteria.
- \* The spike recovery must be between 70% and 130%. Lower recoveries of n-nonane are permissible (if included in the calibration of the C9-C12 aliphatic range). If the recovery of n-nonane is <30%, note the nonconformance in the executive parrative.

#### Actions:

Actions on LCS recovery should be based on both the number of compounds that are outside the %R criteria and the magnitude of the excedance of the criteria.

If the %R of the analyte is > UL, qualify all positive results (j) for the affected analyte in the associated samples and accept nondetects.

If the %R of the analyte is < LL, qualify all positive results (j) and reject (R) nondetects for the affected analyte in the associated samples.

If more than half the compounds in the LCS are not within the required recovery criteria, qualify all positive results as (J) and reject nondetects (R) for all target analyte(s) in the associated samples.

# Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix (1 per 20 samples per matrix)? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected. Discuss the actions below:

|         |                                                                                                      | Criteria we    | All crite<br>ere not met a | ria were m<br>Ind/or see l |             |    |
|---------|------------------------------------------------------------------------------------------------------|----------------|----------------------------|----------------------------|-------------|----|
| IX.     | FIELD/LABORATORY DUPLICAT                                                                            | E PRECISIO     | ON                         |                            |             |    |
| Sample  | e IDs:                                                                                               |                |                            | Matrix:                    | <u> </u>    |    |
| overall | aboratory duplicates samples may<br>precision. These analyses meas<br>may have more variability thar | ure both field | d and lab p                | recision; th               | erefore, th | ne |

laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field

| COMPOUND                             | SQL                         | SAMPLE<br>CONC.                         | DUPLICATE CONC.                        | RPD      | ACTION                      |
|--------------------------------------|-----------------------------|-----------------------------------------|----------------------------------------|----------|-----------------------------|
| No field/laborator used to assess pr | y duplicate<br>recision. RF | analyzed with this<br>D within laborato | data package. MS/iny and generally acc | MSD reco | overies RPD control limits. |
|                                      |                             |                                         |                                        |          | · · ·                       |

#### Criteria:

duplicate samples.

The project QAPP should be reviewed for project-specific information. RPD  $\pm$  30% for aqueous samples, RPD  $\pm$  50 % for solid samples if results are  $\geq$  SQL. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

SQL = soil quantitation limit

# Actions:

If both the sample and the duplicate results are nondetects (ND), the RPD is not calculable (NC). No action is needed.

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria.

If one sample result is not detected and the other is  $\geq 5x$  the SQL qualify (J/UJ).

**Note:** If SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is < 5x the SQL, use professional judgment to determine if qualification is appropriate.

| All criteria were met                    | X |
|------------------------------------------|---|
| Criteria were not met and/or see below _ |   |

# XI. COMPOUND IDENTIFICATION

The compound identification evaluation is to verify that the laboratory correctly identified target analytes as well as tentatively identified compounds (TICs).

- 1. Verify that the target analytes were within the retention time windows.
  - Retention time windows must be re-established for each Target VPH Analyte each time a new GC column is installed, and must be verified and/or adjusted on a daily basis.
  - Coelution of the m- and p- xylene isomers is permissible.
  - All surrogates must be adequately resolved from individual Target Analytes included in the VPH Component Standard.
  - For the purposes of this method, adequate resolution is assumed to be achieved if the height of the valley between two peaks is less than 25% of the average height of the two peaks.
  - The n-pentane (C5) and MtBE peaks must be adequately resolved from any solvent front that may be present on the FID and PID chromatograms, respectively.

Note: Target analytes were within the retention time window.

2. If target analytes and/or TICs were not correctly identified, request that the laboratory resubmit the corrected data.

|                                                                                                                                                                              | Criteria were not                                                   | All criteria were metX<br>t met and/or see below     |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|--|--|--|--|
| III. QUANTITATION LIMITS AND SAMPLE RESULTS                                                                                                                                  |                                                                     |                                                      |  |  |  |  |
| The sample quantitation evaluation is to verify laboratory quantitation results.                                                                                             |                                                                     |                                                      |  |  |  |  |
| In the space below, please show a minimum of one sample calculation:                                                                                                         |                                                                     |                                                      |  |  |  |  |
| MC45503-3MS                                                                                                                                                                  | VPH (C7 – C10 Aliphatics)                                           | $RF = 6.167 \times 10^5$                             |  |  |  |  |
| FID                                                                                                                                                                          |                                                                     |                                                      |  |  |  |  |
| []=(53551411)/(6.167)                                                                                                                                                        | < 10 <sup>5</sup> )                                                 |                                                      |  |  |  |  |
| [] = 86.84 ppb Ok                                                                                                                                                            |                                                                     |                                                      |  |  |  |  |
| MC45503-1MS                                                                                                                                                                  | VPH (C9 - C10 Aromatics)                                            | $RF = 4.916 \times 10^5$                             |  |  |  |  |
| PID                                                                                                                                                                          |                                                                     |                                                      |  |  |  |  |
| $[] = (72402067)/(4.916 \times 10^5)$                                                                                                                                        |                                                                     |                                                      |  |  |  |  |
| [] = 147.28 ppb Ok                                                                                                                                                           |                                                                     |                                                      |  |  |  |  |
| 2. If requested, verify that the results were above the laboratory method detection limit (MDLs).                                                                            |                                                                     |                                                      |  |  |  |  |
| <ol> <li>If dilutions performed, were the SQLs elevated accordingly by the laboratory?</li> <li>List the affected samples and dilution factor in the table below.</li> </ol> |                                                                     |                                                      |  |  |  |  |
| SAMPLE ID                                                                                                                                                                    | DILUTION FACTOR                                                     | REASON FOR DILUTION                                  |  |  |  |  |
|                                                                                                                                                                              |                                                                     |                                                      |  |  |  |  |
|                                                                                                                                                                              |                                                                     |                                                      |  |  |  |  |
| If dilution was not perfection estimate results (J) for the                                                                                                                  | formed and the results were abone affected compounds. List the affe | ve the concentration range, ected samples/compounds: |  |  |  |  |

#### **EXECUTIVE NARRATIVE**

SDG No:

MC45503

Laboratory:

Accutest, Massachusetts

Analysis:

MADEP EPH

Number of Samples:

accutest, Massachuse

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Two (2) soil samples were analyzed for Extractable TPHC Ranges by method MADEP EPH. Samples were validated following the METHOD FOR THE DETERMINATION OF EXTRACTABLE PETROLEUM HYDROCARBONS (EPH) quality control criteria, Massachusetts Department of Environmental Protection, Revision 1.1 (2004). Also the general validation guidelines promulgated by the USEPA Hazardous Wastes Support Section. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

**Critical issues:** 

None

Major:

None

Minor:

None

**Critical findings:** 

None

**Major findings:** 

None

**Minor findings:** 

None

COMMENTS:

Results are valid and can be used for decision making purposes.

**Reviewers Name:** 

Rafael Infante

Chemist License 1888

Signature:

May 16, 2016

Date:

# SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: MC45503-1

Sample location: BMSMC Building 5 Area Sampling date: 4/22/2016

Matrix: Soil

# METHOD: MADEP EPH

| Analyte Name                 | Result | Units Dilution Factor Lab Flag Validation Reportable | Lab Flag | Validation | Reportable |
|------------------------------|--------|------------------------------------------------------|----------|------------|------------|
| Ç11 - C22 Aromatics (Unadj.) | 25000  | ug/Kg 1                                              |          | <b>C</b>   | Yes        |
| Ç9 - C18 Aliphatics          | 12000  | ug/Kg 1                                              |          | <b>C</b>   | Yes        |
| Ç19 - C36 Aliphatics         | 12000  | ug/Kg 1                                              | •        | <b>C</b>   | Yes        |
| Ç11 - C22 Aromatics          | 25000  | ug/Kg 1                                              | Ši.      | <b>C</b>   | Yes        |

Sample ID: MC45503-2

Sample location: BMSMC Building 5 Area

Sampling date: 4/22/2016

Matrix: Soil

# METHOD: MADEP EPH

| Ç11 - C22 Aromatics | Ç19 - C36 Aliphatics | Ç9 - C18 Aliphatics | Ç11 - C22 Aromatics (Unadj.) | Analyte Name                     |
|---------------------|----------------------|---------------------|------------------------------|----------------------------------|
| 22000               | 11000                | 11000               | 22000                        | Result                           |
| ug/Kg               | ug/Kg                | ug/Kg               | ug/Kg                        | Units                            |
| 1                   | ш                    | Ľ                   | ₽                            | Units Dilution Factor Lab Flag \ |
|                     | •                    | ı                   | ì                            | Lab Flag                         |
| C                   | <b>C</b>             | _                   | _                            | Validation                       |
| Yes                 | Yes                  | Yes                 | Yes                          | Reportable                       |

# DATA REVIEW WORKSHEETS

| Type of validation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Full:X<br>Limited:                                                                                                                      | Project Number:_MC45503  Date:04/22/2016 Shipping date:04/22/2016 EPA Region:2                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REVIEW OF EXT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RACTABLE PETROL                                                                                                                         | EUM HYDROCARBON (EPHs) PACKAGE                                                                                                                                                                                                                                                                                                                                                                                |
| validation actions. This more informed decision were assessed accord orecedence METHOD HYDROCARBONS (VF (2004). Also the gener Support Section. The Communication of the communic | document will assist the nand in better serving ing to the data validation FOR THE DETERPH), Massachusetts Depral validation guidelines | cile organics were created to delineate required to reviewer in using professional judgment to make the needs of the data users. The sample results on guidance documents in the following order of MINATION OF EXTRACTABLE PETROLEUM partment of Environmental Protection, Revision 1.1 to promulgated by the USEPA Hazardous Wastes dation actions listed on the data review worksheets as otherwise noted. |
| The hardcopied (labo<br>received has been revieure inclu-<br>review for SVOCs inclu-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ewed and the quality co                                                                                                                 | st_Laboratories data package ntrol and performance data summarized. The data                                                                                                                                                                                                                                                                                                                                  |
| -q-ipo Didi 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                       | Sample matrix: _Groundwater/Soil                                                                                                                                                                                                                                                                                                                                                                              |
| l rip blank No.:<br>Field duplicate No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                               |
| _X Data Complet _X Holding Time: _N/A_ GC/MS Tunin _N/A_ Internal Stand _X_ Blanks _X_ Surrogate Re _X_ Matrix Spike/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | leness<br>s<br>g<br>lard Performance<br>coveries                                                                                        | X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits                                                                                                                                                                                                                                                                             |
| Overall<br>_Extractable_Petroleun<br>(C9_to_C36_Aliphatics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n_Hydrocarbons_by_G0<br>;_C11_to_C22_(Aromat                                                                                            | Comments: C_by_Method_MADEP_EPH,_REV_1.1 ics)                                                                                                                                                                                                                                                                                                                                                                 |
| Definition of Qualifiers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                               |
| J- Estimated resu J- Compound not R- Rejected data JJ- Estimated nonc Reviewer:   Date: 05/13/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | detected                                                                                                                                | f                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                               |

|             |                                | Criteria were not i | met and/or see below |
|-------------|--------------------------------|---------------------|----------------------|
| l.          | DATA COMPLETN<br>A. Data Packa |                     |                      |
| <u>MISS</u> |                                | DATE LAB. CONTACTED | DATE RECEIVED        |
|             |                                |                     |                      |
|             |                                |                     |                      |
| -           |                                |                     |                      |
|             |                                |                     |                      |
| B.          | Other                          |                     | Discrepancies:       |
|             |                                |                     |                      |
|             |                                |                     |                      |
|             |                                |                     |                      |
|             |                                |                     |                      |
|             |                                |                     |                      |

All criteria were met \_\_x\_\_\_

| All criteria were met                  | X |
|----------------------------------------|---|
| Criteria were not met and/or see below |   |

# **HOLDING TIMES**

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of extraction, and subsequently from the time of extraction to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

| SAMPLE ID | DATE             | DATE                   | DATE           | ACTION          |
|-----------|------------------|------------------------|----------------|-----------------|
|           | SAMPLED          | EXTRACTED              | ANALYZED       |                 |
|           |                  |                        |                |                 |
|           |                  |                        |                |                 |
| Samples   | extracted and ar | l<br>nalyzed within me | thod recommend | ed holding time |
| <u> </u>  |                  |                        |                |                 |
|           |                  |                        |                |                 |
|           |                  |                        |                |                 |

# Criteria

# Preservation:

Aqueous samples must be acidified to a pH of 2.0 or less at the time of collection.

Soil samples must be cooled at 4 ± 2 °C immediately after collection.

# Holding times:

Samples must be extracted within 14 days of collection, and analyzed within 40 days of extraction.

| Cooler temperature | (Criteria: 4 <u>+</u> 2 °C): | 2.5°C |  |
|--------------------|------------------------------|-------|--|
|                    |                              |       |  |

Actions: Qualify positive results/nondetects as follows:

If holding times are exceeded, estimate positive results (J) and nondetects (UJ). If holding times are grossly exceeded, use professional judgment to qualify data. The data reviewer may choose to estimate positive results (J) and rejects nondetects (R). If samples were not at the proper temperature (> 10°C) or improperly preserved, use professional judgment to qualify the results.

## Criteria- ICAL

- Five point calibration curve.
- The percent relative standard deviation (%RSD) of the calibration factor must be equal to or less than 25% over the working range for the analyte of interest.
   When this condition is met, linearity through the origin may be assumed, and the average calibration factor is used in lieu of a calibration curve.
- A collective calibration factor must also be established for each hydrocarbon range of interest. Calculate the collective CFs for C9-C18 Aliphatic Hydrocarbons, C19-C36 Aliphatic Hydrocarbons, and C11-C22 Aromatic Hydrocarbons using the FID chromatogram. Tabulate the summation of the peak areas of all components in that fraction against the total concentration injected. The %RSD of the calibration factor must be equal to or less than 25% over the working range for the hydrocarbon range of interest.
  - The area for the surrogates must be subtracted from the area summation of the range in which they elute.
  - The areas associated with naphthalene and 2-methylnaphthalene in the aliphatic range standard must be subtracted from the uncorrected collective C9-C18 Aliphatic Hydrocarbon range area prior to calculating the CF.

# Criteria- CCAL

 At a minimum, the working calibration factor must be verified on each working day, after every 20 samples or every 24 hours (whichever is more frequent), and

#### DATA REVIEW WORKSHEETS

- at the end of the analytical sequence by the injection of a mid-level continuing calibration standard to verify instrument performance and linearity.
- If the percent difference (%D) for any analyte varies from the predicted response by more than ±25%, a new five-point calibration must be performed for that analyte. Greater percent differences are permissible for n-nonane. If the %D for n-nonane is greater than 30, note the nonconformance in the case narrative. It should be noted that the %Ds are calculated when CFs are used for the initial calibration and percent drifts are calculated when calibration curves using linear regression are used for the initial calibration.

# Actions:

If %RSD > 25% for target compounds or a correlation coefficient < 0.99, estimate positive results (J) and use professional judgment to qualify nondetects. If % D > 25% (> 30 for nonane), estimate positive results (J) and nondetects (UJ).

# **CALIBRATIONS VERIFICATION**

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

| Date of initial calibration:02/04/16          |                     |
|-----------------------------------------------|---------------------|
| Dates of continuing calibration verification: | _05/04/16;_05/19/16 |
|                                               |                     |
| Dates of final calibration verification:      | _05/04/16;_05/09/16 |
| Instrument ID numbers:GCDE                    |                     |
| Matrix/Level:_SOIL/AQUEOUS/MEDIUM             |                     |

| DATE                                                                 | LAB FILE | ANALYTE | CRITERIA OUT     | SAMPLES  |  |  |
|----------------------------------------------------------------------|----------|---------|------------------|----------|--|--|
|                                                                      | ID#      |         | RFs, %RSD, %D, r | AFFECTED |  |  |
|                                                                      |          |         |                  |          |  |  |
| Initial and continuing calibration meet method specific requirements |          |         |                  |          |  |  |
|                                                                      |          |         |                  |          |  |  |

A separate worksheet should be filled for each initial curve

|                                                                            |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | met and/or see belowX                                                                                                                                                                                            |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VA. BLANK                                                                  | ANALYSIS R                                                                       | ESULTS (Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ctions 1 & 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                  |
| magnitude of oblanks associal problems with evaluated to decase, or if the | contamination ated with the same blanks etermine where problem is an must be run | problems. The samples, inclued a samples, inclued a sample the sample after sample a | e criteria for evaluding trip, equipma associated with ere is an inherent currence not affects suspected of b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | etermine the existence and uation of blanks apply only to ent, and laboratory blanks. If the case must be carefully a variability in the data for the ting other data. A Laboratory being highly contaminated to |
| List the contar separately.                                                | nination in the                                                                  | e blanks belov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | w. High and low l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | evels blanks must be treated                                                                                                                                                                                     |
| Laboratory bla                                                             | nks                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |
| DATE<br>ANALYZED                                                           | LAB ID                                                                           | LEVEL/<br>MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COMPOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CONCENTRATION UNITS                                                                                                                                                                                              |
| METHOD B                                                                   | LANKS MEET                                                                       | THE METHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DD SPECIFIC CR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ITERIA                                                                                                                                                                                                           |
|                                                                            |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |
|                                                                            |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |
| Field/Trip/Equi                                                            | pment                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                  |
| DATE<br>ANALYZED                                                           | LAB ID                                                                           | LEVEL/<br>MATRIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | COMPOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CONCENTRATION UNITS                                                                                                                                                                                              |
| _NO_TRIP/FIE<br>_DATA_PACK                                                 | ELD/EQUIPME<br>AGE                                                               | ENT_BLANKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S_ANALYZED_AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SOCIATED_WITH_THIS                                                                                                                                                                                               |
|                                                                            | 100000                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THE ALL COMMON TO SERVICE AND ADDRESS OF THE PERSON OF THE |                                                                                                                                                                                                                  |

| All criteria were metX                 |
|----------------------------------------|
| Criteria were not met and/or see below |

# V B. BLANK ANALYSIS RESULTS (Section 3)

**Blank Actions** 

The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. Peaks must not be detected above the Reporting Limit within the retention time window of any analyte of interest. The hydrocarbon ranges must not be detected at a concentration greater than 10% of the most stringent MCP cleanup standard. Specific actions area as follows:

If the concentration is < sample quantitation limit (SQL) and < AL, report the compound as not detected (U) at the SQL.

If the concentration is  $\geq$  SQL but < AL, report the compound as not detected (U) at the reported concentration.

If the concentration is > AL, report the concentration unqualified.

| All criteria were metX_                |  |
|----------------------------------------|--|
| Criteria were not met and/or see below |  |

### SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

| SAMPLE ID                    | SURRO     | GATE COMP  | OUND        |              | ACTION       |
|------------------------------|-----------|------------|-------------|--------------|--------------|
|                              | S1        | S2         | S3          | S4           |              |
| _SURROGATE<br>_LIMITS        | _STANDA   | ARDS_RECOV | /ERIES_WITH | IN_LABORAT   | FORY_CONTROL |
|                              |           |            |             | 3) Y         |              |
| S1 = o-Terpher               | nyl 40-14 | 0%         | S2 = 2-FI   | uorobiphenyl | 40-140%      |
| S3 = 1-Chlorod               | ctadecane | 40-140%    | S4 = 2-Bi   | romonaphthal | ene 40-140%  |
| QC Limits (%)*               | (Aqueous  | )          |             |              |              |
| _LL_to_UL_<br>QC Limits* (So |           | 040_to_14  | 1040_to_    | .14040_td    | _140_        |
| _LL_to_UL_                   | to        | to         | to          | to           | <u> </u>     |

It is recommended that surrogate standard recoveries be monitored and documented on a continuing basis. At a minimum, when surrogate recovery from a sample, blank, or QC sample is less than 40% or more than 140%, check calculations to locate possible errors, check the fortifying standard solution for degradation, and check changes in instrument performance.

If the cause cannot be determined, reanalyze the sample unless one of the following exceptions applies:

- (1) Obvious interference is present on the chromatogram (e.g., unresolved complex mixture);
- (2) The surrogate exhibits high recovery and associated target analytes or hydrocarbon ranges are not detected in sample.

If a sample with a surrogate recovery outside of the acceptable range is not reanalyzed based on any of these aforementioned exceptions, this information must be noted on the data report form and discussed in the Executive Report. Analysis of the sample on dilution may diminish matrix-related surrogate recovery problems. This approach can be used as long as the reporting limits to evaluate applicable MCP standards can still be achieved with the dilution. If not, reanalysis without dilution must be performed.

| All criteria were metX                 |
|----------------------------------------|
| Criteria were not met and/or see below |

# VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples.

At the request of the data user, and in consideration of sample matrices and data quality objectives, matrix spikes and matrix duplicates may be analyzed with every batch of 20 samples or less per matrix.

- Matrix duplicate Matrix duplicates are prepared by analyzing one sample in duplicate. The purpose of the matrix duplicates is to determine the homogeneity of the sample matrix as well as analytical precision. The RPD of detected results in the matrix duplicate samples must not exceed 50 when the results are greater than 5x the reporting limit.
- The desired spiking level is 50% of the highest calibration standard. However, the total concentration in the MS (including the MS and native concentration in the unspiked sample) should not exceed 75% of the highest calibration standard in order for a proper evaluation to be performed. The purpose of the matrix spike is to determine whether the sample matrix contributes bias to the analytical results. The corrected concentrations of each analyte within the matrix spiking solution must be within 40 140% of the true value. Lower recoveries of n-nonane are permissible but must be noted in the narrative if <30%.</p>

| MS/MSD Recov     | eries and Precision Crit | eria        |        |                 |          |
|------------------|--------------------------|-------------|--------|-----------------|----------|
| Sample ID:_MC    | 45503-2_MS/MSD           |             | Matrix | /Level:         | Soil     |
|                  |                          |             |        |                 |          |
| List the %Rs, RI | PD of the compounds w    | hich do not | meet t | he QC criteria. |          |
| MS OR MSD        | COMPOUND                 | % R         | RPD    | QC LIMITS       | ACTION   |
|                  | <u> </u>                 |             |        |                 | <u> </u> |
| -                |                          |             | -      |                 |          |
|                  |                          |             |        |                 |          |
|                  |                          |             |        |                 |          |
| 9                |                          |             |        |                 |          |
|                  |                          |             |        |                 |          |

Note: No MS/MSD duplicate analyzed for aqueous samples.

9

| All criteria were metX_                |  |
|----------------------------------------|--|
| Criteria were not met and/or see below |  |

No action is taken on MS/MSD results alone to qualify the entire case. However, used informed professional judgment, the data reviewer may use the MS/MSD results in conjunction with other QC criteria and determine the need for some qualification of the data. In those instances where it can be determined that the results of the MS/MSD affect only the sample spiked, the qualification should be limited to this sample alone. However, it may be determined through the MS/MSD results that the laboratory is having a systematic problem in the analysis of one or more analytes, which affects the associated samples.

# 2. MS/MSD – Unspiked Compounds

List the concentrations of the unspiked compounds and determine the % RSDs of these compounds in the unspiked sample, matrix spike, and matrix spike duplicate.

| COMPOUND   | CONCENTRA<br>SAMPLE | MSD  | %RPD | ACTION |
|------------|---------------------|------|------|--------|
|            |                     | <br> |      |        |
|            |                     |      |      |        |
|            |                     |      |      |        |
|            |                     |      |      |        |
| 15,000,000 |                     |      |      |        |

Criteria: None specified, use %RSD ≤ 50 as professional judgment.

### Actions:

If the % RSD > 50, qualify the results in the spiked sample as estimate (J). If the % RSD is not calculable (NC) due to nondetect value in the sample, MS, and/or MSD, use professional judgment to qualify sample data.

A separate worksheet should be used for each MS/MSD pair.

|                                                   |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                               | criteria were metX                                                                                                      |
|---------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                                   |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Criteria                                                       | were not me                   | t and/or see below                                                                                                      |
|                                                   | VIII.                                      | LABORATORY CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ITROL SAMPL                                                    | E (LCS/LCSE                   | O) ANALYSIS                                                                                                             |
| matric                                            |                                            | ata is generated to de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | termine accura                                                 | acy of the ana                | alytical method for various                                                                                             |
|                                                   | 1.                                         | LCS Recoveries Crit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eria                                                           |                               |                                                                                                                         |
|                                                   |                                            | List the %R of compe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ounds which do                                                 | not meet the                  | e criteria                                                                                                              |
| LCS II                                            | D                                          | COMPOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | % R                                                            | QC LIMIT                      | ACTION                                                                                                                  |
| LCS                                               | S_REC                                      | OVERY_WITHIN_LAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ORATORY_C                                                      | ONTROL_LIM                    | MTS                                                                                                                     |
|                                                   |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                               |                                                                                                                         |
|                                                   |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                               |                                                                                                                         |
|                                                   | Action                                     | Refer to QAPP for some spike recovery in the spike recovery in the nonconformance in must be < 25%.  The spike recovery in the spike | must be betwee ssible. If the re the executive should be base  | covery of n-n<br>narrative. R | 40%. Lower recoveries of the contract of the contract of the compounds and compounds the compounds are compounds.       |
|                                                   | that ar                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I RPD criteria a                                               | ind the magn                  | itude of the excedance of                                                                                               |
| the as<br>If the<br>for the<br>If more<br>qualify | sociate<br>%R of to<br>affecte<br>e than h | d samples and accept<br>the analyte is < LL, qued analyte in the associ<br>that the compounds in<br>sitive results as (J) an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nondetects. ualify all positive ciated samples. the LCS are no | re results (j) a              | for the affected analyte in<br>and reject (R) nondetects<br>required recovery criteria,<br>all target analyte(s) in the |
| 2.                                                | Freque                                     | ency Criteria:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                |                               |                                                                                                                         |
| per ma<br>If no,<br>the eff                       | atrix)? <u>Y</u><br>the data<br>fect and   | <u>/es</u> or No.<br>a may be affected. Us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | se professional<br>ngly. Discuss a                             | judgment to                   | matrix (1 per 20 samples<br>determine the severity of<br>elow and list the samples                                      |

| All criteria were metX  Criteria were not met and/or see below                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                 |                 |     |        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------|-----------------|-----|--------|--|
| IX. FIELD/LAE                                                                                                                                                                                                                                                                                                                                                                                                                                                        | X. FIELD/LABORATORY DUPLICATE PRECISION |                 |                 |     |        |  |
| Sample IDs: Matrix:                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                 |                 |     |        |  |
| Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which measures only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples. |                                         |                 |                 |     |        |  |
| COMPOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SQL                                     | SAMPLE<br>CONC. | DUPLICATE CONC. | RPD | ACTION |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                 |                 |     |        |  |
| No field/laboratory duplicate analyzed with this data package. MS/MSD recoveries results RPD used to assess precision. RPD within laboratory and generally acceptable control limits                                                                                                                                                                                                                                                                                 |                                         |                 |                 |     |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                 |                 |     |        |  |
| Criteria:  The project QAPP should be reviewed for project-specific information.  RPD ± 30% for aqueous samples, RPD ± 50 % for solid samples if results are ≥ SQL.  If both samples and duplicate are <5 SQL, the RPD criteria is doubled.                                                                                                                                                                                                                          |                                         |                 |                 |     |        |  |

SQL = soil quantitation limit

# Actions:

If both the sample and the duplicate results are nondetects (ND), the RPD is not calculable (NC). No action is needed.

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria.

If one sample result is not detected and the other is  $\geq 5x$  the SQL qualify (J/UJ).

**Note:** If SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is < 5x the SQL, use professional judgment to determine if qualification is appropriate.

| All criteria were metX                 |
|----------------------------------------|
| Criteria were not met and/or see below |

# XI. COMPOUND IDENTIFICATION

The compound identification evaluation is to verify that the laboratory correctly identified target analytes as well as tentatively identified compounds (TICs).

- 1. Verify that the target analytes were within the retention time windows.
  - Retention time windows must be re-established for each Target EPH Analyte each time a new GC column is installed, and must be verified and/or adjusted on a daily basis.
  - The n-nonane (n-C9) peak must be adequately resolved from the solvent front of the chromatographic run.
  - All surrogates must be adequately resolved from the Aliphatic Hydrocarbon and Aromatic Hydrocarbon standards.
  - For the purposes of this method, adequate resolution is assumed to be achieved if the height of the valley between two peaks is less than 25% of the average height of the two peaks.
  - The n-pentane (C5) and MtBE peaks must be adequately resolved from any solvent front that may be present on the FID and PID chromatograms, respectively.
- 1a. Aliphatic hydrocarbons range:
  - o Determine the total area count for all peaks eluting 0.1 minutes before the retention time (Rt) for n-C9 and 0.01 minutes before the Rt for n-C19.
  - Determine the total area count for all peaks eluting 0.01 minutes before the Rt for n-C19 and 0.1 minutes after the Rt for n-C36.

Are the aliphatic hydrocarbons range properly determined?

Yes? or No?

Comments:

- Aromatic hydrocarbons range:
  - Determine the total area count for all peaks eluting 0.1 minutes before the retention time (Rt) for naphthalene and 0.1 minutes after the Rt for benzo(g,h,i)perylene.
  - Determine the peak area count for the sample surrogate (OTP) and fractionation surrogate(s). Subtract these values from the collective area count value.

Are the aliphatic hydrocarbons range properly determined?

Yes? or No?

Comments:

|    | All oritorio cuara mat. V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | All criteria were metX<br>Criteria were not met and/or see below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2. | If target analytes and/or TiCs were not correctly identified, request that the laboratory resubmit the corrected data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3. | Breakthrough determination - Each sample (field and QC sample) must be evaluated for potential breakthrough on a sample specific basis by evaluating the % recovery of the fractionation surrogate (2-bromonaphthalene) and on a batch basis by quantifying naphthalene and 2-methylnaphthalene in both the aliphatic and aromatic fractions of the LCS and LCSD. If either the concentration of naphthalene or 2-methylnaphthalene in the aliphatic fraction exceeds 5% of the total concentration for naphthalene or 2-methylnaphthalene in the LCS or LCSD, fractionation must be repeated on all archived batch extracts.                             |
|    | NOTE: The total concentration of naphthalene or 2-methylnaphthalene in the LCS/LCSD pair includes the summation of the concentration detected in the aliphatic fraction and the concentration detected in the aromatic fraction.                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | Comments:Concentration_in_the_aliphatic_fraction_<_5%_of_the_totalconcentration_for_naphthalene_and_2-methylnaphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4. | Fractionation Check Standard – A fractionation check solution is prepared containing 14 alkanes and 17 PAHs at a nominal concentration of 200 ng/µl of each constituent. The Fractionation Check Solution must be used to evaluate the fractionation efficiency of each new lot of silica gel/cartridges, and establish the optimum hexane volume required to efficiently elute aliphatic hydrocarbons while not allowing significant aromatic hydrocarbon breakthrough. For each analyte contained in the fractionation check solution, excluding n-nonane, the Percent Recovery must be between 40 and 140%. A 30% Recovery is acceptable for n-nonane. |

Is a fractionation check standard analyzed?

Comments: Not applicable.

Yes? or No?

| All criteria were met                  | X |
|----------------------------------------|---|
| Criteria were not met and/or see below |   |

# XII. QUANTITATION LIMITS AND SAMPLE RESULTS

The sample quantitation evaluation is to verify laboratory quantitation results.

In order to demonstrate the absence of aliphatic mass discrimination, the response ratio of C28 to C20 must be at least 0.85. If <0.85, this nonconformance must be noted in the laboratory case narrative.

The chromatograms of Continuing Calibration Standards for aromatics must be reviewed to ensure that there are no obvious signs of mass discrimination.

Is aliphatic mass discrimination observed in the sample?

Yes? or No?

Is aromatic mass discrimination observed in the sample?

Yes? or No?

1. In the space below, please show a minimum of one sample calculation:

Blank Spike

EPH (C11 – C22, Aromatics)

RF = 98200

[] = (43396348)/(98200)

[] = 442 ppb Ok

Blank Spike

EPH (C19 – C36, Aliphatics)

RF = 66810

[] = (1488678)/(66810)

[] = 22.28 ppb Ok

# DATA REVIEW WORKSHEETS

- 2. If requested, verify that the results were above the laboratory method detection limit (MDLs).
- 3. If dilutions performed, were the SQLs elevated accordingly by the laboratory? List the affected samples and dilution factor in the table below.

| SAMPLE ID   | DILUTION FACTOR | REASON FOR DILUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 313             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.000.000   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                 | the second secon |
|             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <del></del> |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VEIQUE      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| If dilution was not performed, affected samples/compounds: | s (J) fo  | or the affected | compounds. | List the |
|------------------------------------------------------------|-----------|-----------------|------------|----------|
|                                                            | <br>- A/- | 7777.00         |            |          |